首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   5篇
  国内免费   2篇
测绘学   5篇
大气科学   18篇
地球物理   15篇
地质学   75篇
海洋学   3篇
天文学   50篇
综合类   1篇
自然地理   3篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   12篇
  2017年   8篇
  2016年   8篇
  2015年   11篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   10篇
  2009年   4篇
  2008年   9篇
  2007年   7篇
  2006年   8篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   5篇
  1990年   1篇
  1986年   2篇
  1984年   1篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1966年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
31.
Presently available simplified analytical methods and semi-empirical methods for the analysis of buried pipelines subjected to fault motion are suitable only for the strike-slip and the normal-slip type fault motions, and cannot be used for the reverse fault crossing case. A simple finite element model, which uses beam elements for the pipeline and discrete nonlinear springs for the soil, has been proposed to analyse buried pipeline subjected to reverse fault motion. The material nonlinearities associated with pipe-material and soil, and geometric nonlinearity associated with large deformations were incorporated in the analysis. Complex reverse fault motion was simulated using suitable constraints between pipe-nodes and ground ends of the soil spring. Results of the parametric study suggest that the pipeline's capacity to accommodate reverse fault offset can be increased significantly by choosing a near-parallel orientation in plan with respect to the fault line. Further improvement in the response of the pipeline is possible by adopting loose backfill, smooth and hard surface coating, and shallow burial depth in the fault crossing region. For normal or near normal orientations, pipeline is expected to fail due to beam buckling at very small fault offsets.  相似文献   
32.
A combined simulation–optimization-based methodology is proposed to identify the optimal design parameters for granular bed–stone column-improved soft soil. The methodology combines a finite difference-based simulation model and an evolutionary multiobjective optimization model. A combined simulation–optimization methodology is developed for two different formulations: (a) the minimization of maximum settlement and the minimization of differential settlement subject to stress constraints; (b) the minimization of maximum settlement, the minimization of differential settlement and the maximization of the degree of consolidation subject to stress constraints. The developed methodology is applied to an illustrative system. Different scenarios are evaluated to examine critical field conditions. The solution results show that the modular ratio and the ultimate stress carrying capacity of the stone column are the most important parameters for optimal design. The obtained results also show the potential applicability of the developed methodology.  相似文献   
33.
Numerical procedures are developed to analyze interaction between fully grouted bolts and rock mass using ‘enriched finite element method (EFEM)’. A solid element intersected by a rock bolt along any arbitrary direction is termed as ‘enriched’ element. The nodes of an enriched element have additional degrees of freedom for determining displacements, stresses developed in the bolt rod. The stiffness of the enriched element is formulated based on properties of rock mass, bolt rod and grout, orientation of the bolt and borehole diameter. Decoupling at grout–bolt interface and elasto‐plastic behavior of rock mass have also been incorporated into the EFEM procedures. The results of this method are compared with analytical pull‐out test results presented by Li and Stillborg (Int. J. Rock Mech. Min. Sci. 1999; 36 :1013–1029). In addition, a numerical example of a bolted tunnel is provided to demonstrate the efficacy of the proposed method for practical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
34.
Basu  Sarbani  Antia  H.M. 《Solar physics》2000,192(1-2):449-458
Using data from the Global Oscillations Network Group (GONG) that covers the period from 1995 to 1998 we study the change in frequencies of solar oscillations with solar activity. From these frequencies we attempt to determine any possible variation in solar structure with solar activity. We do not find any evidence of a change in the convection zone depth or extent of overshoot below the convection zone during the solar cycle.  相似文献   
35.
We attempt to detect short-term temporal variations in the rotation rate and other large scale velocity fields in the outer part of the solar convection zone using the ring diagram technique applied to Michelson Doppler Imager (MDI) data. The measured velocity field shows variations by about 10 m/s on the scale of few days.  相似文献   
36.
The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper. A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth, acceleration amplitude and wall stiffness. Numerical analyses using FLAC 2D were also performed considering one level of bracing. The strut forces, lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results. The study showed that in a post-seismic condition, when other factors were constant, lateral displacement, bending moment, strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration. The study also showed that as wall stiffness decreased, the lateral displacement of the wall and ground surface displacement increased, but the bending moment of the wall and strut forces decreased. The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude, but did not change significantly with wall stiffness. Strut force was the least affected parameter when compared with others under a seismic condition.  相似文献   
37.
The sorption of ferrous iron to a clay mineral, nontronite (NAu-2, a ferruginous smectite), was investigated under strictly anoxic conditions as a function of pH (3-10), Fe2+ concentration (0.01-50 mM), equilibration time (1-35 days), and ionic strength (0.01-0.5 M NaClO4). The surface properties of NAu-2 were independently characterized to determine its fixed charge and amphoteric site density in order to interpret the Fe2+ sorption data. Fe2+ sorption to NAu-2 was strongly dependent on pH and ionic strength, reflecting the coupled effects of Fe2+ sorption through ion exchange and surface complexation reactions. Fe2+ sorption to NAu-2 increased with increasing pH from pH 2.5 to 4.5, remained constant from pH 4.5 to 7.0, increased again with further increase of pH from pH 7.0 to 8.5, and reached a maximum above pH 8.5. The Fe2+ sorption below pH 7.0 increased with decreasing ionic strength. The differences of Fe2+ sorption at different ionic strengths, however, diminished with increasing equilibration time. The Fe2+ sorption from pH 4.5 to 7.0 increased with increasing equilibration time up to 35 days and showed stronger kinetic behavior in higher ionic strength solutions. The kinetic uptake of Fe2+ onto NAu-2 is consistent with a surface precipitation mechanism although our measurements were not able to identify secondary precipitates. An equilibrium model that integrates ion exchange, surface complexation and aqueous speciation reactions reasonably well describes the Fe2+ sorption data as a function of pH, ionic strength, and Fe2+ concentration measured at 24 h of equilibration. Model calculations show that the species Fe(OH)+ was required to describe Fe2+ sorption above pH 8.0 satisfactorily. Overall, this study demonstrated that Fe2+ sorption to NAu-2 is affected by complex equilibrium and kinetic processes, likely caused by surface precipitation reactions.  相似文献   
38.
In the present study, a mechanical model has been developed to study the behavior of multilayer geosynthetic-reinforced granular fill over stone column-reinforced soft soil. The granular fill and geosynthetic reinforcement layers have been idealized by Pasternak shear layer and rough elastic membranes, respectively. The Kelvin–Voight model has been used to represent the time-dependent behavior of saturated soft soil. The stone columns are idealized by stiffer springs and assumed to be linearly elastic. The nonlinear behavior of the soft soil and granular fill is considered. The effect of consolidation of soft soil due to inclusion of the stone columns on settlement response has also been included in the model. Plane strain conditions are considered for the loading and reinforced foundation soil system. An iterative finite difference scheme is applied for obtaining the solution and results are presented in nondimensional form. It has been observed that if the soft soil is improved with stone columns, the multilayer reinforcement system is less effective as compared to single layer reinforcement to reduce the total settlement as there is considerable reduction in the total settlement due to stone column itself. Multilayer reinforcement system is effective for reducing the total settlement when stone columns are not used. However, multilayer reinforcement system is effective to transfer the stress from soil to stone column. The differential settlement is also slightly reduced due to application of multiple geosynthetic layers as compared to the single layer reinforcement system.  相似文献   
39.
The Weather Research and Forecasting (WRF) model and its three-dimensional variational data assimilation system are used in this study to assimilate the INSAT-3D, a recently launched Indian geostationary meteorological satellite derived from atmospheric motion vectors (AMVs) over the South Asian region during peak Indian summer monsoon month (i.e., July 2014). A total of four experiments were performed daily with and without assimilation of INSAT-3D-derived AMVs and the other AMVs available through Global Telecommunication System (GTS) for the entire month of July 2014. Before assimilating these newly derived INSAT-3D AMVs in the numerical model, a preliminary evaluation of these AMVs is performed with National Centers for Environmental Prediction (NCEP) final model analyses. The preliminary validation results show that root-mean-square vector difference (RMSVD) for INSAT-3D AMVs is ~3.95, 6.66, and 5.65 ms?1 at low, mid, and high levels, respectively, and slightly more RMSVDs are noticed in GTS AMVs (~4.0, 8.01, and 6.43 ms?1 at low, mid, and high levels, respectively). The assimilation of AMVs has improved the WRF model of produced wind speed, temperature, and moisture analyses as well as subsequent model forecasts over the Indian Ocean, Arabian Sea, Australia, and South Africa. Slightly more improvements are noticed in the experiment where only the INSAT-3D AMVs are assimilated compared to the experiment where only GTS AMVs are assimilated. The results also show improvement in rainfall predictions over the Indian region after AMV assimilation. Overall, the assimilation of INSAT-3D AMVs improved the WRF model short-range predictions over the South Asian region as compared to control experiments.  相似文献   
40.
The ENE-plunging macroscopic folds, traced by calc gneiss interbanded with marble and sillimanite schist within the Peninsular Gneiss around Suganapuram in the ‘Palghat gap’ in southern India, represent structures of the second generation (D2). They have folded the axial planes of a set of D1 isoclinal folds on stratification coaxially, so that the mesoscopic D1 folds range from reclined in the hinge zones, through inclined to upright in the limb zones of the D2 folds. Orthogonal relation between stratification and axial planar cleavage, and ‘M’ shaped folds on layering locate the hinge zones of the D1 folds, whereas folds on axial planar cleavage with ‘M’ shaped folds are the sites of the D2 fold hinges. Extreme variation in the shapes of the isoclinal D1 folds from class 1B through class 1C to nearly class 2 of Ramsay is a consequence of buckling followed by flattening on layers of widely varying viscosity contrast. The large ENE-trending structures in this supracrustal belt within the Peninsular Gneiss in the ‘Palghat gap’ could not have evolved by reorientation of NS-trending structures of the Dharwar tectonic province to the north by movement along the Moyar-Bhavani shear zone which marks the boundary between the two provinces. This is because the Moyar and Bhavani faults are steep dipping reverse faults with dominant dip-slip component. Deceased  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号